DEPARTMENT OF PHYSICS

HOLY CROSS COLLEGE (Autonomous), Nagercoil-629004

Teaching Plan

Semester: I Course Name: MECHANICS Course code: PC2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objective: To impart knowledge on basic aspects of dynamics, conservation laws, kinematics, collisions and elasticity.

COs	Upon completion of this course, students will be able to	PSO addressed	CL
CO – 1	understand and define the laws involved in mechanics	PSO1	U
CO – 2	apply conservation laws in collision experiments	PSO2	Ар
CO – 3	interpret the principles of gravitation and moment of inertia through theory and experiments	PSO3	Ap
CO – 4	analyze the fundamentals of center of mass and rocket motion	PSO2	An
CO – 5	- 5 apply pressure-velocity relation in fluid flow in the field of fluid dynamics		Ар

Course Outcomes

Modules

Credits: 4 Total contact hours: 60 (Including assignments and tests)

Unit	Section	Topics	Lecture	Learning	Pedagogy	Assessment/ Evaluation		
			hours	outcome		Evaluation		
Ι		Laws of Motion						
	1	Laws of conservation of energy, linear momentum and angular momentum – work energy	2	To understand the concept of conservation of energy.	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice		
	2	theorem work done by gravitational force –	2	To be able to derive the	Lecture discussion	questions		
		work done by spring force – potential energy – conservative and non conservative forces – potential energy curve		workdone by gravitational and spring force and distinguish conservative and non conservative forces	with illustration	Formative assessment I		
	3	Collision – Elastic and inelastic collision(Fundament al laws of impact) – Newton's law of impact – coefficient of restitution	3	To know the principles of collision	Lecture discussion			

	4	Impact of a smooth	3	To distinguish	Lecture	
		sphere on a fixed		between	discussion	
		plane – Direct		direct impact		
		impact between two		and oblique		
		smooth spheres –		impact		
		Oblique impact		between two		
		between two smooth		smooth		
		spheres –		spheres		
		Calculation of final		1		
		velocities of the				
		spheres – Loss of				
		K.E due to impact				
II		I	Dynamics	of Rigid Body		
	1	Moment of inertia –	2	To understand	Lecture	Short test
		Theorems of		the concept		
		perpendicular and		moment of	Illustration	Quiz
		parallel axes		inertia		
					-	
	2	M.I of a circular	3	To categorize	Lecture	Assignment
		ring, disc, solid		moment of	discussion	
		sphere, hollow		inertia of		Formative
		sphere and cylinder		different		assessment
		about all axes		objects.		
	3	Compound	4	To be able to	Lecture	
		pendulum – theory –		find the		
		equivalent simple		acceleration	Illustration	
		pendulum –		due to gravity		
		reversibility of		at a place		
		centers of oscillation				
		and suspension –				
		determination of g				
		and k				
III	1			vitation	-	
	1	Newton's law of	2	To recall the	Lecture	
		gravitation –		concept of	with PPT	
		Kepler's laws of		collision and	Illustration	Formative
		gravitation – G by		to recognize		assessment II
		Boy's method –		the impact of		assessment II
		Mass and density of		smooth		
		earth		spheres.		
	2	Acceleration due to	3	To understand	Question-	
		gravity – Variation		the variation	answer	
		of g with altitude,		of g with	session	
		depth and rotation of		altitude, depth		
		earth – Value of g at		and rotation of	Lecture	
		poles and equator		earth		

	3	Gravitational field – Gravitational potential – Gravitational potential due to spherical shell – Gravitational potential due to a solid sphere (inside	3	To understand the concept gravitational potential	Lecture with PPT Illustration	
IV		and outside)	Central I	Force Motion		
11	1	Angular velocity,	3	To acquire	Lecture	
	•	angular momentum	5	knowledge on	Leeture	
		and K.E of rotation –		angular	Discussion	Formative
		Torque and angular		velocity and		assessment II
		acceleration –		angular		
		Relation between		momentum.		
		them – Expression				
		for acceleration of a				
		body rolling down				
		an inclined plane				
		without slipping				
	2	Center of mass –	6	To understand	_	
		Velocity and		the concept	Lecture	
		acceleration of		centre of mass	D' '	
		centre of mass –			Discussion	
		Determination of motion of individual				
		particle – System of				
		variable mass. Rocket				
		motion-				
		Satellite				
V		S	tatics and]	Hydrodynamics		
	1	Friction-laws of	3	To have	Lecture	Short test
		friction-Angle of		practical	with PPT	
		friction-Cone of		knowledge		Formative
		friction – Centre of		on angle of		assessment
		gravity – Solid and		friction and		III
		hollow tetrahedron-		cone of		
		solid and hollow		friction		
		hemisphere				

2	Centre of pressure– vertical rectangular lamina – vertical triangular lamina	3	To understand the concept rectangular and triangular	Brain storming session. Lecture
			lamina.	Illustration
3	Hydrodynamics –	3	To be able to	Lecture
	Equation of		understand	with PPT
	continuity-Pitot's		the principles	
	tube and		in	Illustration
	Venturimeter –		hydrodynami	
	Euler's equation of		c s.	
	unidirectional flow –			
	Torricelli's theorem			
	– Bernoulli's			
	theorem and its			
	applications			

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Dr.LeslyFathima & Sr.Sebastiammal

Semester: I Course Name: Allied Physics I Course code: AP2011

No of hours per week	No of credits	Total no of hours	Marks
4	4	60	100

Objectives

To understand the concept of strength of materials, viscous properties of liquids, heat transformation from one place to another, converting heat to do mechanical work and basic properties of light such as interference and diffraction.

Course Outcomes

СО	Upon completion of this course the students will be able to:	PSO addressed	CL
CO – 1	Understand the fundamental concepts of Physics.	PSO-1	U
CO – 2	Analyse the concepts and study the applications of Thermodynamics, material properties heat and optics.	PSO-2	An
CO – 3	Apply their depth knowledge of Physics in day today life.	PSO-3	Ар
CO – 4	Develop their knowledge and carry out the practical by applying these concepts	PSO-5	R

Unit	Section	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι		Properties of M	latter			
	1	Young's modulus – Rigidity modulus – Bulk modulus – Poisson's ratio (definition alone)	2	To understand the basic concepts of Young's modulus and its definition	Illustration and lecture	Evaluation through: quiz, short questions
		Bending of beams – Expression for bending moment	1	To study the Bending of beams and define Expression for bending moment	Illustration and theoretical derivation	Multiple choice, questions ,
	2	Determination of Young' modulus – uniform and non uniform bending. Expression for Couple per unit twist	2	To determine uniform and non- uniform bending and study couple per unit twist	Illustration, theoretical derivation and Practical	Deriving theoretical Formulas Problem
	3	Work done in twisting a wire – Torsional oscillations of a body– Rigidity modulus of a wire and M.I. of a disc by torsion pendulum	3	To understand working of torsion pendulum	Lecture and theoretical derivation	solving Formative assessment
II		Viscosity				
	1	Viscosity – Viscous force – Co- efficient of viscosity – Units and dimensions		To understand the basic concepts of viscosity and study its units	Illustration, Theoretical formulation Problem Solving	Evaluation through: quiz, short test
	2	Poiseuille's formula for co- efficient of viscosity of a liquid – Determination of co- efficient of viscosity using burette and comparison of Viscosities.		To determine Poiseuille's formula and determine the co- efficient	Lecture , Theoretical formulation Practical demonstration	Assignment on applications. Problem
	3	Bernoulli's theorem – Statemen and proof – Venturimeter – Pitot tube.	2	To understand the concept of venturimeter and Pitot tube.	Lecture , Illustration, Theoritical formulation Practical	Solving Formative assessment
III		Conduction, Convection				
	1	Specific heat capacity of solids and liquids – Dulong and Pettit's law	2	To understand the basic concepts of specific heat capacity	Illustration and lecture	Evaluation through: quiz, short questions

	2 3	Newton's law of cooling – Specific heat capacity of a liquid by cooling Thermal conduction–Coefficient of thermal conductivity by Lee's disc method.	2	To use the law of Newtons law of cooling to find specific capacity of liquid To understand the basic concepts of conduction mode of heat transfer through	Illustration and theoretical derivation Illustration, theoretical derivation and Demonstration	Multiple choice, questions, Deriving theoretical
	4	Convection process – Lapse rate – Greenhouse effect	1	To define convection mode of heat transfer and study its application	Illustration and lecture	formulas Formative assessment
	5	Black body radiation – Planck's radiation law – Rayleigh Jean's law, Wien's displacement law – Stefan's law of radiation.	2	To deduce laws related to heat transfer through radiation	Illustration, theoretical derivation and Demonstration	
IV		Thermodynar				
	1	Zeroth and First Law of thermodynamics – Second law of thermodynamics	2	To understand the basic concepts of laws of thermodynamics	Lecture, Demonstration, theoretical formulation	Evaluation through: quiz, short questions
	2	Carnot's engine and Carnot's cycle – Efficiency of a Carnot's engine	3	To analyse the various aspects of Carnot engine	Lecture, Demonstration, theoretical formulation	Multiple choice, questions, Deriving
	3	Entropy – Change in entropy in reversible and irreversible process – Change in entropy of a perfect gas – Change in entropy when ice is converted into steam.	3	To understand the concept of entropy and its applications	Lecture, Demonstration, theoretical formulation	theoretical formulas Formative assessment
V		Optics				
	1	Interference – Conditions for interference maxima and minima – Air wedge – Thickness of a thin wire – Newton's rings – Determination of wavelength using Newton's rings.	3	To understand the basic concepts of interference phenomena and its application	Illustration, Theoretical formulation, Demonstration	Evaluation through: quiz, Deriving theoretical formulas
	2	Diffraction – Difference between diffraction and interference –	2	To understand the basic concepts of	Lecture, Demonstration,	

	Theory of transmission grating		diffraction	Theoretical	Assignment
	– Normal incidence		phenomena and	formulation	on
			its application		applications
3	Optical activity - Biot's laws	3	To understand the	Lecture,	
	_		basic concepts of	Demonstration,	Formative
	Specific rotatory power				
	-				
	Determination of		optical activity	Theoretical	assessment
	specific				
	rotatory power using Laurent's		phenomena and	formulation	
	half shadepolarimeter.		its application		

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructors: Ms.Aji Udahya

Semester I Non Major Elective Course - I Course Name: Physics in Everyday Life - I Course Code: PNM201

No. of hours per week	No of credits	Total no of hours	Marks
2	2	30	100

Objectives

- 1. To introduce the basic concepts in physics and their applications in everyday life.
- 2. To understand the physics concept applied in day to day life situations.

Course Outcomes

СО	Upon completion of this course, students will be able to:	PSO's	CL
		addresed	
CO – 1	understand their knowledge of basic scientific principles	PSO1	U
	and fundamental concepts in physics.		
CO – 2	recall the various phenomena of sound waves applied in	PSO2	R
	day today life		
CO – 3	understand the basic laws of physics and different forces	PSO1	Ар
	involved in nature.		
CO – 4	explain the Physics concepts behind sports	PSO3	Е
CO – 5	categorize different characteristic nature of light and its	PSO1	С
	properties like refraction, reflection and diffraction.		

Total contact hours: 30 (Including lectures, assignments and tests)

Unit	Module	Topics	Lecture hours	Learning outcome	redago	Assessment/ Evaluation
I		Properties of 1		leat and Thermod	gy lynamics	
		Introduction- Elasticity- Elastic behaviour of materials- Elastic energy- Elastic and Plastic Deformation- Polymers and elastomers- Application of Elastic behaviour of materials	1	To understand the fundamental concepts in elastic behaviour of materials	Lecture, PPT	Quiz, test, Formative assessment (I)
	2	Surface Tension -Concept behind Surface Tension- Examples of surface Tension , Capillary action- Experiment- Examples of capillary action	2	To apply Surface tension effects in day today lie situation.	Lecture, Demonstra tion	
	3	Viscosity - definition - Applications of Viscosity.	1	To understand the concept viscosity	Lecture	

II			S	ound		
	1	Introduction- frequency spectrum of Sound waves - The Human voice-How does the ear hears?-	1	To understand the basic properties of sound	Lecture, Demons- tration	
	2	Amazing Abilities of Sound Basic characteristics of sound-	1	To be able to understand the basic characteristics of sound	Lecture,	Quiz test,
	3	Reflection of Sound-echo- Interference -Application of reflection of sound wave	1	To understand the fundamental concept of reflection	Lecture	Formative assessment
	4	Ultra sound: Properties and applications of ultrasound-Applications of sound in human life.	1	To understand the applications of ultrasonic	Lecture, PPT	
III			Me	chanics		
	1	Introduction- terms used in mechanics- Centripetal	1	To understand Centripetal and	Lecture	Assignments
		and centrifugal forces-		centrifugal forces		Assignments,

		Contact and non contact forces				
	2	Friction and its types- Newton's laws of motion- gravity	2	To understand friction and its types	Lecture, PPT	Formative
	3	Mass and weight- Mechanics in everyday life.	1	To understand the relation between mass and weight and apply the mechanics in day to day life	Lecture, PPT	
IV		Bior	nechanio	cs in Sports		
	1	Forces and torques in Bio Mechanics- Centre of gravity	1	To understand the forces, normal reaction, friction		
	2	Physics of walking – Physics of cycling – Physics of long jump	1		Lecture, PPT	Formative assessment
	3	Physics of swimming, volleyball and basketball	2	To understand the forces, normal reaction, friction,	Lecture, PPT	
V			Renewa	able Energy		

1	Solar power – Applications - Wind power and applications -	2	Understand the natural power	Lecture, PPT	
	Applications - Hydroelectric power and its uses				
2	Biogas plant and its	1	To use the biogas	Lecture,	Quiz,
	advantages -		resources in day	PPT	Assignments
3	Advantages and	1	To understand the	Lecture,	
	disadvantages of renewable energy sources.		pros and cons of these resources	PPT	
	fone waste energy sources.				

CO- Course Outcome; CL-Cognitive Level; R- Remember; U- Understand; Ap- Apply; C - Create.

Course Instructor: S.J.Jenepha Mary

	Subject code	:PC1731	
Number of hours per week	No of credits	Total number of hours	Marks
4	4	60	100

Semester :III
Name of the Course :ELECTRICITY AND MAGNETISM
Subject code :PC1731

Objectives: 1.To provide knowledge on the basic concept of electric and magnetic fields.

2. To understand the laws and theorems in electromagnetism and their application.

СО	Upon completion of this course the students will be able to :	PSO	CL
CO-1	Explain the concept and features of the electrostatic force (Coulomb force), magnetic field, flux, force, the electric force field, Gauss's Law and its application(charged sphere, cylinder, plane sheet)	PSO-1	U
CO-2	Analyse the presence of electric potential and potential difference, within a framework of distributed symmetric charge distributions	PSO-2	An
CO-3	Solve problems associated with the effect of uniform magnetic fields on moving charges and current-carrying wires, loops and the magnetic	PSO-3	C
CO -4	Understand the laws of electromagnetic induction as applied to self and mutual induction.	PSO-3	U
CO-5	Analyse AC circuit behavior (LR,CR and LCR)	PSO-5	An
CO -6	Apply kirchoff's laws and network theorems to electrical circuits .	PSO-2	А
CO-7	Determine magnetic dipole moment using magnetometers and AC bridges, and Ballistic galvanometer to do electrical measurements	PSO-5	E

Credit:4

	Ci cuit.	-				Ŧ	T	
Unit	Modul	e	Topics	Lectu e	r	Learning	Pedagogy	Assessment/ Evaluation
Ι	Electric	Field				-		
	1	Tor	ctric dipole, Force and que, Potential energy of a ble in a uniform electric l	3	basic featu	nderstand the c concepts and ires related electric field	Illustration and lecture	Evaluatio n through: quiz,
	2		es of force – Flux of the electric I, Gauss law	2		erive Gauss in terms of cric field	PPT Illustration Theoretical	short questions
	3	chai cyli	ctric field due to a uniformly ged sphere, infinite ndrical charge, infinite plane et of charge	3	Law diffe	pply Gauss's for rrent igurations	Illustration Theoretica I derivation	Multiple choice, questions
П	Electrostatic Potential		Potential		-			
	1	field	servative nature of electrostatic l, Potential difference, Electric ential as line integral of electric	2	the	nderstand origin of rostatic field	PPT Illustration,	Evaluatio n through:

		field		between potential, its line integral and potential	formulation	short test
	2	Potential at a point due to a point charge, uniformly charged conducting sphere, Electric potential energy	3	To extend the idea of potential to calculate potential of different	Lecture , Illustration, Theoritical	Assignment on applications.
	3	Electrical Images - Capacity of a condenser, spherical condenser and Parallel plate condenser	3	To understand the concept of electrical images and evaluate the capacitance of various condensers	Lecture , Illustration, Theoretical formulation	Formative assessment(I &II)
Ш	Magneti	cfield and Electromagnetic induction	1	·		
	1	Magnetic field and Definition B , of Magnetic force on a particle and Magnetic field lines, Magnetic force on a current carrying wire, Torque on a current loop	3	To understand the basic concepts and features related to Magnetic fiet, the force	Lecture , Illustration, Theoretical formulation	Evaluatio n through: quiz, short questions
	2	Faradays law of electromagnetic induction, Lenz law and Explanation of Faradays law	2	To apply laws of electromagnetic induction and be able to calculate self- and mutual inductance.	Lecture , Illustration,	Multiple choice,
	3	Coupling of two coils with flux linkage and Magnetic energy stored in the inductance	3	To evaluate the effect of coupling two inductances and the magnetic energy stored	Illustration, Theoretical formulation	questions , Deriving theoretica
IV	Electric	al Circuits and Network theorems				
	1	Kirchoff's laws,Series circuit – AC through an L-R circuit, C-R circuit	3	To apply Kirchoff's laws to ac circuit theory including L-R circuit and C-R circuit	Lecture, Demonstratio n, theoretical	Evaluatio n through: quiz, short
	2	LCR in series resonance circuit- Vector diagram method, The series circuit at resonance, The parallel resonance circuit	3	To analyse the behaviour of series and parallel resonance circuit and arrive at the condition for	Lecture, Demonstratio n, theoretical formulation	questions Multiple choice, questions, Deriving
	3	Network theorems, Ideal constants, Thevenins theorem, Norton's theorem - Maximum power transfer theorem	3	Understand the theorems which decide the distribution of currents and potentials in complex	Lecture , Demonstratio n , theoretical	theoretical formulae Formative assessment (II&III)
V	Floctric	al Measurements				

1	AC bridges, The Desauty bridge , Anderson's L-C bridge, Owen's L-C bridge	4	To understand the distribution of currents in C-R and L-C, AC	Illustration, Theoretical	Evaluatio n through: quiz,
2	Moving coil gavanometer, Correction for damping in Ballistic galvanometers, Measurement of charge sensitivity of a ballistic galvanometer,	4	To understand the theory, working and application of Moving coil gavanometer for	Lecture, Demonstratio n, theoretical formulation	Deriving theoretical formulas Formative

Course instructor: Dr. Fernando Loretta Head of the Department:Dr.S.Mary Delphine

Semester: III Name of the Course: Non -Conventional energy sources Subject Code: PC1732

Number of hours per week	No of credits	Total number of hours	Marks	
4	4	60	100	

Objectives

1. To provide knowledge on various alternative sources of energy.

2. To create awareness about the non-conventional energy sources which will solve the energy crisis.

СО	Upon completion of this course, students will be able to:	PSO	CL
CO-1	Utilize the solar energy for generating the electric power	PSO-6	Ар
CO-2	Apply the solar energy in various sectors (industry, agriculture and domestic purposes)	PSO-4	Ap
CO-3	Explain the basic principles of wind energy conversion, its components and its classification	PSO-1	U
CO-4	Explain the various Biomass conversion Processes	PSO-1	U
CO-5	Elaborate the geothermal energy resources and chemical energy resources (fuel cells)	PSO-2	C
CO-6	Outline the extraction of useful energy from Earth, Ocean, Wind and Sun.	PSO-2	U
CO-7	Design the various pollution-free energy resources(solar heater, solar cooker, Wind mill etc)	PSO-6	С
CO-8	Solve the present and future energy crisis	PSO-7	С

Teaching Plan
Total contact hours: 60 (Including lectures, assignments and Tests)

Uni t	Mod	dule	Topics	Lect e	ur	Learning outcome	Pedagogy	Assessment	
I		Energ		C		outcome	I cuagogy	<u>-</u> -	
	1	Intro water electri gener	duction-Solar heating - Solar	3	for concreting		Lecture discussion		
	2	Agri	culture and strial process heat	2	2 Apply the 2 solar energy in various sectors		Lecture	Quiz, Formative Assessment	
	3	Solar	distillation – cooker - Solar houses	3		ign the ous Pollution energy	Lecture with ppt, Group	I Multiple Choice Questions	
	4		production ydrogen	1	Apply the solar energy for the production		Lecture		
П	Wind	energ	y	-					
	1	Basic principles of wind energy conversion - Nature of the wind- Power in the wind- Site selection		4	the func	lerstand lamental of d resource	Lecture , Group discussion		
	2	- Clas syste	components of WECS ssification of WEC ms - Advantages and vantages of WECS -	3	win its	lain the d energy, ponents	Lecture discussion	Short Test, Formative Assessment II	
	3	Wind - H mach	lenergy collectors orizontal axial lines	2		line action of d energy	Lecture discussion		
Ш	Bio-E	nergy		.					
	1	Bio mass- Bio conversion technologies-Wet processes-Dry processes-		4	the func of con	lerstand lamentals Biomass version cesses &	Lecture discussion	Short Test, Formative	
	2	gene Fact	tosynthesis-Bio gas eration- tors affecting ligestion or	2	2 processes & Explain the Bio gas generation and the		Lecture discussion	Assessment I, II	

	3 Geo th	Classification of Bio gas plants - Constructional details of digesters ermal Energy and Chemical	3 Energy	Aware from a technical point of view of Bio gas plants	Lecture, Illustration	
					ľ	
		Nature of geo thermal fields – Geo thermal sources - Hydrothermal resources - Vapour dominated systems - Liquid dominated systems Geo pressured	4	Outline the technologies that are used to harness the power of Geo thermal energy	Lecture discussion	
	• 2	Fuel cells - Design and principle of operation of a fuel cell – Types of fuel cell – Advantages and disadvantages of fuel cells	- 2	Identify the types of practical fuel cells, their operational principles & basic electrochemistry for understanding the	Lecture discussion	Short Test, Formative Assessment II, III
	3	Conversion efficiency of fuel cells – Types of electrodes – Work output and emf of fuel cells – Applications of fuel cells	3	Explore the methods to calculate fuel cell open circuit voltage, fuel cell loss & efficiency	Lecture discussion	
V	Energy	<u>y from the ocean and Hydrog</u>	en ener	gy	- 18	
	1	Introduction-Ocean thermal electric conversion(OTEC) - Methods of ocean thermal electric power generation- Open cycle OTEC system- Closed or Anderson OTEC cycle-	3	Understand about the OTEC and the various methods of power generation from ocean energy	Lecture discussion	Short Test, Formative Assessment III
	2	Heat exchangers- Bio fouling- Site selection- Energy utilization-Hybrid cycle-Prospects of ocean thermal energy conversion in India-	4	Explain the ocean energy utilization for various sectors	Lecture discussion	Assessment III

3 Hydrogen ener Hydrogen production- Electrolytic pro hydrogen-The	luction of	Able to account for the most central principles of Hydrogen production	Group discussion	
--	------------	--	---------------------	--

Course instructor: M. Abila Jeba Queen

Head of the Department:Dr.S.Mary Delphine

Semester

: II /IV

Name of the Course

: Allied Physics II : AP1721/AP1741

Subject code

Teaching Plan

Unit	Section	Topics	Lectur e	outcome	Pedagogy	Assessmen t /
Ι	Therma	Physics				
	1	Conduction in solids, Thermal conductivity, Lee's disc method- Experiment to determine the thermal conductivity -	2	To understand the basic concepts of conduction mode of heat	Illustration and lecture	Evaluatio n through: quiz, short
		Relation between thermal and electrical conductivities- Widemann– Franz law.	1	To derive the relation betwee electrical conductivity and thermal conductivity	Illustration and theoretical derivation	questions Multiple choice, questions
	2	Convection: Newton's law of cooling, Determination of specific heat capacity of liquid	2	Todefineconvectionmodeofheattransferandstudyits	Illustration, theoretical derivation	, Deriving theoretica
	3	Radiation: Distribution of energy in the spectrum of black body – Results.	3	To understand radiation mode of heat transfer and black body radiation	Lecture and theoretical derivation	l Formulas Proble m
II	Current I	Electricity		•		
	1	Ohms law- Electrical conductivity - Kirchoff's law - Wheatstone's bridge – condition for balance		To understan the basi d and features related to Current Electricity	Illustration, Theoritical formulatio n	Evaluatio n through: quiz, short test
	2	Carey Foster's Bridge – Measurement of specific resistance – Determination of temperature coefficient of resistance	1	To determine temperature coefficient of resistance	Lecture , Theoretical formulation Practical	Assignment on applications.

	3	Potentiometer - calibration of voltmeter and ammeter.	2	To understand the concept of calibrating voltmeter and ammeter using potentiometer	Lecture, Illustration, Theoretical formulatio n Practical	Problem Solving Formative
III	Electron	nagnetism	•			
	1	Electromagnetic Induction – Faraday's laws – Lenz's law	3	To understan the basi d and features related to	Lecture , Illustration	Evaluatio n through:

2	Self-inductance – mutual	2	TT 1 1	T (
	inductance – Experimental determination of mutual inductance- Coefficient of coupling		To apply laws of electromagnetic induction and be able to calculate self- and mutual	Lecture , Illustration ,	Multiple choice, questions	
3	Alternating current – Mean, RMS, peak - A.C. Circuits – LCR in series.	3		Illustration, Theoretical formulatio n Practical	, Deriving theoretica l formulas	
Semi cor	uductor Electronics					
1	Semiconductor – pn junction s diode	2	To understan the basi d and features related to Semiconductor	Lecture , Demonstration , theoretical	Evaluatio n through: quiz,	
2	Half wave and full wave rectifier – Bridge rectifier	2	To analyse the different type of rectifiers	Lecture , Demonstration	short questions	
3	Zener diode - Regulated power supply	2	To understand the concept of using zener diode as voltage regulator	Lecture , Demonstration , theoretical	Multiple choice, questions	
	Transistor – CE Configuration	2			Deriving	
Digital F	lectronics		L		1	
1	Number systems- decimal – binary – Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division	4	To understand the basic concepts and features related to binary and decimal number	Illustration, Theoretical formulatio n	Evaluatio n through: quiz, Deriving	
2	Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables – NAND and NOR as Universal gates	4	To get thorough knowledge on logic gates	Lecture , Demonstration , theoretical formulation	theoretical Formulas Assignmen	
	1 2 3 Digital E 1	coupling 3 Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. Semi conductor Electronics 1 Semiconductor - pn junction s diode 2 Half wave and full wave rectifier - Bridge rectifier 3 Zener diode - Regulated power supply Transistor - CE Configuration 1 Number systems- decimal - binary - Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division 2 Logic gates - OR, AND, NOT, XOR, NAND and NOR gates - truth tables - NAND and NOR as	coupling Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. 3 Semi conductor Electronics 1 1 Semiconductor - pn junction s diode 2 2 Half wave and full wave rectifier - Bridge rectifier 2 3 Zener diode - Regulated power supply 2 J Transistor - CE Configuration 2 Digital Electronics 1 Number systems- decimal - binary - Conversion of Decimal Number into Binary Number- binary addition, subtraction, multiplication and division 4 2 Logic gates - OR, AND, NOT, XOR, NAND and NOR gates - truth tables - NAND and NOR as 4	coupling self- and mutual 3 Alternating current – Mean, RMS, peak – A.C. Circuits – LCR in series. 3 To understand the basi concepts of alternating current Semi conductor Electronics 1 Semiconductor Flectronics 2 To understan the basi d and features related to Semiconductor 1 Semiconductor – pn junction s diode 2 To understan the basi d and features related to Semiconductor 2 Half wave and full wave rectifier – Bridge rectifier 2 To understan the different type of rectifiers 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode as voltage regulator 1 Number systems- decimal – binary – Conversion of Decimal Number into Binary Number- binary – Conversion of Decimal Number into Binary Number- binary and decimal number 4 To understand the basic concepts and features related to binary and decimal number 2 Logic gates – OR, AND, NOT, XOR, NAND and NOR gates – truth tables – NAND and NOR as 4 To or get thorough	coupling self- and mutual 3 Alternating current - Mean, RMS, peak - A.C. Circuits - LCR in series. 3 To understand the basi concepts of alternating current Illustration, theoretical 5 Semiconductor Electronics 5 Internating current Internation of practical 1 Semiconductor - pn junction s diode 2 To understan the basi d and features related to Semiconductor Lecture , Demonstration , theoretical 2 Half wave and full wave rectifier - Bridge rectifier 2 To analyse different type of rectifiers Lecture , Demonstration , theoretical 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode and features related to Lecture , Demonstration , theoretical 3 Zener diode - Regulated power supply 2 To understand the concept of using zener diode and features related to Lecture , Demonstration , theoretical 0 Digital Electronics 1 Number systems- decimal - binary - Conversion of Decimal Number into Binary Number addition, subtraction, multiplication and division 4 To understand the basic concepts and features band and peaton and decimal number	

							assessment
-	-	• • • • • •		·1 T 1	\circ \mathbf{M}	D A '' TT 11	

Course instructor: Dr. R. Krishna Priya, Ms. M. Abila Jeba Queen, Ms. P.Aji Udhaya

Head of the Department: Dr.S.Mary Delphine

Semester: IV Name of the Course : ANALOG SYSTEM AND APPLICATIONS Subject code : PC1741 Teaching Plan

Unit	Modules	Topics	Lectur e	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Semicondu	ctor diodes and transistors				
	1	Semiconductor materials – Intrinsic semiconductors – Extrinsic semiconductors, N- type semiconductor – P-type semiconductor	2	Identify the different types of semiconductor materials	Illustration , Descriptive lecture	Evaluatio n through: quiz, short question s Descriptiv e answers
	2	P-N Junction, P-N Junction without external voltage, P-N junction with forward bias and reverse bias, V-I characteristics of a P-N junction diode – Static and	3	Understand the structure and functioning of a P-N junction diode under	Descriptive lecture. Practical demonstrat i on	Evaluatio n through: quiz, short
	3	Half wave rectifier, Bridge Rectifier, Calculation of ripple factor and rectification efficiency, Filters (π filter), Zener diode, Voltage regulator	3	Understand the working of rectifiers, filters and voltage regulators	PPT Illustration, Descriptive lecture. Practical	question s Descriptiv e answers Formative
	4	Junction transistor- structure, working, transistor, Amplifying action – Three configurations, Transistor characteristics (CE configuration	3	Understand the structure ,working and amplification action of a	Descriptive lecture. Practical demonstrat i on	assessmen t
II	Transistor	amplifier				

	1	Transistor biasing, selection of operating point, Bias stabilization ,Fixed bias and Voltage divider bias	3	Understand the concept of biasing and the different types of biasing	Descriptiv e lecture.	Evaluatio n through: quiz,
	2	Single stage transistor amplifier, Development of transistor AC equivalent circuit method, h-parameter equivalent circuit	3	Analyse single stage transistor using AC equivalent circuit and h	Descriptive lecture. Practical demonstrat i on	Proble m solving short question
	3	Analysis of a single state CE amplifier using hybrid models, Input and output impedance, current-voltage and power gain	3	Analyse the working of a single stage transistor and arrive at relation for various	Descriptive lecture. Theoretical formulatio n	s Descriptiv e answers Assignment Formative
III	Feedback in	n Amplifiers				
	1	Concept of feedback in amplifiers, Types of feedback, Voltage gain of amplifier	3	Understand the concept and types of feedback	PPT Illustration , Descriptive lecture.	Evaluatio n through: quiz,
	2	Effect of negative feedback on gain stability, distortion and noise, input and output impedence	4	Explain the advantages of negative	Descriptive lecture. Theoretical	short question
	3	Amplifier circuits with negative feedback, RC coupled amplifier without bypass capacitor, Emitter follower	3	Apply the concept of feedback in different practical circuits	Descriptive lecture. Theoretical formulatio n , Practical demonstrat	s Descriptiv e answers Formative
IV	Oscillator					7
	1	Need for an oscillator, Generating sine wave using tuned oscillator circuit, Frequency of oscillations in LC circuit	3	Understand the principle and working of oscillators	Descriptive lecture, Theoretical formulatio n	Evaluatio n through: quiz,
	2	Positive feedback in amplifier (Barkhausen criterion), Starting voltage, LC oscillators, Hartley and	4	Explain about the internal circuitry and working of various types of	Theoretical formulatio n , Practical demonstrat	short question s

				oscillators		answers
	3	Basic principle of RC oscillators – RC phase shift oscillator, Wien bridge oscillator, crystal oscillator	4	Identify the different construction and circuit design of oscillators	Descriptive lecture. Theoritical formulatio n ,	Assignment Formative assessmen t
V	Operationa	al amplifier				
	1	Parameters of a general and Ideal operational amplifier	3	Understand the basic parameters,oper a tions and features of	Descriptive lecture. Theoretical formulatio n	Evaluatio n through: quiz,
	2	Inverting and Non- inverting amplifier, Difference and Summing amplifier, Log and antilog amplifiers,	4	Identify the use of Opamp in various circuits	Descriptive lecture. Theoretical formulatio n ,	short question s Descriptiv e answers
	3	Opamp as Voltage follower, Integrator, Differentiator, Comparators and Schmitt trigger	4	Apply the Opamp for different application s	Descriptive lecture. Theoretical formulatio n ,	Formative assessmen t

Course instructor: Dr. V. Shally

Head of the Department: Dr. S. Mary Delphine

Semester : V

Name of the Course : Elements of Modern

Physics Subject cod No of hours per week	e : PC1751 No. of credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To provide insight into wave- particle duality and its consequence. **2.**To apply skill related to principle and concepts of modern physics.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Explain the theories and experiment related to particle and wave nature of light.	PSO-1	U
CO- 2	Identify particle nature experiments (photoelectric effect, planks law, Compton effect, photoelectric effect) and wave nature experiments(Thomson experiment, Davision Germer experiment).	PSO-2	Ар
CO- 3	Define uncertainty principle.	PSO-2	R
CO -4	Analyse various models of atomic spectra.	PSO-5	An
CO- 5	Solve Schrodinger equation in different dimensional stages.	PSO-4	С
CO- 6	Estimate Lorentz transformation for length contraction ,time dilation.	PSO-5	Е

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment /Evaluation
Ι	Particle N	Nature of Radiation				

1	Introduction , Spectral distribution of	2	То	PPT,	Quiz test,
	blackbody radiation, Quantum hypothesis of		summaris	Lecture	Formative
	Planck		e the	method	assessment
			quantum		(I)
			theories		
2.	Planck's law of radiation, Photoelectric	5	То	PPT,	
	Effect,		explain		
	Photoemission characteristics Failure of		particle		
	electromagnetic wave theory, Einstein's		nature		

		Photoelectric equation		theories		
	3.	Millikan's verification of Einstein's equation, Continuous X-ray Spectrum, Compton effect	4	To explain particle nature experime nts	Lecture	
	4.	Energy of scattered radiation and recoil electron, Compton scattering vs Photoelectric effect,Pair Production, Particle or Waves.	4	To compare Compton and Photoelec tric effect	PPT, Lecture, Group discussio n	
Π	Wave Na	ture of Particles				
	1	Introduction , De Broglie waves and wavelength, Wavelength vs Voltage	3	To explain wave nature theories	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Davisson –Germer experiment, Experiments of G.P Thomson, Frisch and stern's method	4	To explain wave nature experime nts	Lecture method	
	3.	Standing electron waves in a circular orbit, Heisenberg's uncertainty principle	4	To Define uncertain ty principle	PPT, Lecture, Group discussio n	
	4.	Uncertainty relation, Uncertainty principle and concept of Bohr orbits, Derivation of the uncertainty principle, Phase velocity and group velocity, Phase and group velocities of matter waves.	4	To Derive uncertain ty relation	PPT, Lecture, Group discussio n	
III	Atomic s					
		Introduction ,Spectra of H atom,Orbital magnetic moment of H atom, Larmor precession	3	To analyse various models of atomic spectra	Lecture, Group discussio n	Quiz test, Formative assessment (II),

	2	SternGerlachexperiment,ElectronSpin,Vector atom model,Spin-orbit interactionPauli'sexclusion principle,Total angularmomentum in multi-electron atoms,Energylevels and transitions of helium,Alkali spectra	4	To analyse various interaction To analyse various models of spectra	PPT, Lecture, PPT, Lecture, Group discussion	
	4.	Normal Zeeman effect, Anomalous Zeeman effect, Stark effect	3	To differenti ate differet effects	PPT, Lecture,	
IV	Atomic n	nodels and Quantum Mechanics				
	1	Introduction ,Atomic spectra,Thomson's model Rutherford's nuclear atom model	2	To analyse various models of atomic spectra	PPT, Lecture,	Quiz test, Formative assessment (II & III),
	2	Bohr's model of hydrogen atom Hydrogen spectrum Ritz combination principle Correction for finite nuclear mass	4	To explain hydrogen atom model	PPT, Lecture,	
	3	Discovery of heavy hydrogen , Hydrogenic atoms Sommerfeld's model , Bohr's correspondence principle,Resonance, excitation and ionization potentials,– Measurements of critical potentials Merits and Limitations of Bohr's theory	4	To explaint the Merits and Limitatio ns of Bohr's theory	PPT, Lecture,	
	4	Schrodinger wave equation, Schrodinger time dependent wave equation Schrodinger time independent wave equation, Physical significance of the wave function	3	To Solve Schrodin ger equation	PPT, Lecture,	

V	5 Special Th	Applications of Schrodinger wave equation , Particle in a one dimensional potential well Particle in three dimensional box, Degeneracy Electrons in a metal.	2	To Solve Schrodin ger equation in different dimensio nal stages.	PPT, Lecture,	
	1	Introduction ,Frame of reference, Galilean transformations,Michelson-Morley experiment	2	To explain differed reference	Lecture, PPT	Formative assessment (II & III),
	2	Einstein's postulates,Lorentz transformations Length contraction,Time dilation	3	Estimate Lorentz transform ation for length contracti on, time dilation.	Lecture.	
	3	Relativity of simultaneity,Addition of relativistic velocities, Relativistic mass,Mass- energy relation	4	Estimate Lorentz transform ation for	Lecture, PPT	
	4	Minkowski's four dimensional space,Time continuum,General theory of relativity,Massless particle.	6	Derive four dimensio nal space,Ti me continuu m	Lecture	

Course Instructor : Dr. V. Shally and Dr. R. Krishna Priya

Head of the Department : Dr. S. Mary Delphine

Name of the Course	: Waves and Optics		
Subject code	: PC1752		
No of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100
Ŭ		20	100

Objectives 1. To study the electromagnetic nature of light.

2.To enable the students to link the theory with day to day life.

СО	Upon completion of this course, students will be	PSO	CL
CO	able to:	addressed	CL
CO - 1	explain the fundamental principle of optics.	PSO - 1	U
CO - 2	determine the behavior of a ray at any optical	PSO - 6	Е
	surface .(lenses, Prisms).	150 0	Ľ
CO - 3	explain the types of waves and its characteristics.	PSO - 2	U
CO - 4	analyze the intensity variation of light due to	PSO - 3	An
	polarization, interference and diffraction.	150 5	7 111
CO - 5	distinguish Interference, diffraction and	PSO - 2	An
	polarization.	150 2	7 111
CO - 6	test the optical planeness of any optical surface.	PSO - 6	С
	measure the various optical parameters. (focal		
CO - 7	length, power, refractive index, radius of curvature,	PSO - 4	Е
	dispersive power etc) using optical components	120	-
	(prism, lenses, glass plate, grating).		
	understand the interference and diffraction from		
CO - 8	wave optics concepts and know its applications.	PSO - 1	U
	Understand polarization of light and its		÷
	applications.		

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment/ Evaluation
Ι	Geometri	cal Optics				
	1	Introduction – Refractive index and optical path- Sign convention – Refraction through lenses – Principal foci	2	To summaris e the basic concepts of optics	PPT, Lecture method	Quiz test, Formative assessment (I)
	2.	Deviation produced by a thin lens – Power	5	То	Lecture,	

	3.	of a lens - Aberrations – Spherical aberration in a lens –Methods of reducing spherical aberration (brief) – Chromatic aberration Dispersion by a prism - Refraction through a prism – Angular and chromatic dispersion – Dispersive power	4	explain the various aberratio ns in lens systems To discuss the dispersio n and refraction in a prism	PPT	
	4.	Achromatism in prism – Dispersion without deviation – Condition for achromatism of two lenses placed in contact and separated by a finite distance.	4	To explain achromat ic principles of prism	PPT, Lecture, Group discussio n	
II	Wave Op	otics			I	I
	1	Oscillations – Waves – Travelling waves – Wave front and ray – Examples of waves – Characteristics	3	To explain the different types of waves and characteri stics	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Mathematical representation – Phase velocity – Complex representation – Wave packet and band width – Group velocity	4		Lecture method	
	3.	Propagation of light waves: Introduction – Maxwell's equations – Physical significance	4	To discuss the light propagati	PPT, Lecture, Group discussio	
				on in a medium	n	

III	Interfere 1	relations – Wave equation for free space – Velocity of Electromagnetic waves – Relation between refractive index and relative permittivity.	3	explain the various paramete rs of waves To analyse	Lecture, Group discussio n Lecture, Group	Quiz test, Formative
				the principle in interferen ce	discussio n	assessment (II),
	2	Analytical treatment – Theory of interference – Fresnel's biprism – Fringes with white light	4	To explain the differed theories of interferen ce	PPT, Lecture,	
	3.	Lioyd's mirror – Interference in thin films – Interference due to reflected and transmitted light	5	To explain the interferen ce in thinfilms	PPT, Lecture, Group discussio n	
	4.	Wedge shaped thin film – Testing the planeness – Newton's rings – Determination of λ	3	To determin e the waveleng th of the light source	PPT, Lecture,	
IV	Diffractio	D n				
	1	Fraunhofer diffraction : Introduction – Single slit – Intensity distribution	2	To analyse the principle in	PPT, Lecture,	Quiz test, Formative assessment (II & III),

r	1					
				diffractio		
				n		
	2	Double slit – Comparison between interference and diffraction – Fraunhofer diffraction at N slits	4	To compare the interferen ce and diffractio	PPT, Lecture,	
	3	Plane diffraction grating – Theory – Principal maxima – Oblique incidence	4	n To explain the theoritica l principles in diffractio n grating	PPT, Lecture,	
	4	Determination of λ using grating – Dispersive power – Fresnel's diffraction	3	To determin e the dispersiv e power	PPT, Lecture,	
	5	Introduction – Huygen's Fresnel theory – Fresnel's assumptions – Rectilinear propagation of light	2	To explain the theoritica l principles of diffractio n	PPT, Lecture,	
V	Polarizat	ion		1	1	1
	1	Introduction – Polarization – Unpolarized and polarized light – Types of polarization	2	To explain the polarizati on of light	Lecture, PPT	Formative assessment (II & III),

2	Production of plane polarized light -	3	То	Lecture.	
	Polarizer and analyser – Anisotropic crystals		explain		
	– Double refraction		the		
			polarizati		
			on and		
			double		
			refraction		
			in		
			crystals		
3	Ordinary and extra ordinary ray – Positive	4	То	Lecture,	
	and negative crystals – Nicol prism – Quarter		discuss	PPT	
	and half wave plates		the half		
			and		
			quarter		
			wave		
			plates		
4	Production and analysis of elliptically and	6	То	Lecture	
	circularly polarized light - Analysis of		analyze		
	polarized light		the		
			different		
			polarized		
	structor · Dr S Mary Delphine and Dr A		lights		

Course Instructor

: Dr. S. Mary Delphine and Dr. Abila Jeba Queen

Head of the Department : Dr. S. Mary Delphine

Name of the Course : Solid State Physics

Subject code : PC1753

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Bonding i	n Solids		I		
	1	Bonding in solids, An over view of an atom, Condition for bonding, Octet rule and stability	4	To acquire knowledge on bonding in solids	Lecture Discussion with PPT illustration	Evaluation through short test Multiple
	2	Van der Waal's bonding, Ionic bonding, Covalent bonding	3	To understand the different kinds of bonding	Lecture discussion with PPT illustration	choice questions Formative assessment I
	3	Dipole-dipole interactions, Hydrogen bonding, Metallic bonding, Mixed bonding	4	To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion	

	4	Calculation of ionization	4	To be able to	Lecture	
	4		4	determine the	discussion	
		energies for compounds,		ionization	discussion	
		Comparison of physical				
II	Curvete	properties line Materials		energies		
11			4	-	T	G1
	1	Classification of solids,	4	То	Lecture	Short test
		Periodicity in crystalline		understand	T 11	• •
		solids, Lattice translation		the concept	Illustration	Quiz
		vectors		of crystal		
				structure.		
	2	Unit and primitive cells,	4	To acquire	Lecture	Assignment
		Bravais lattices,		knowledge	discussion	
		Symmetry operations		on unit cells		Formative
				and bravais		assessment I
				lattices		
	3	Crystal indexing, Miller	4	To be able to	Lecture	
		indices of lattice planes,		determine the	discussion	
		Directions in crystals,		miller indices		
		Atomic packing factor		of lattice		
		(APF)		planes		
	4	Density and lattice	3	To acquire	Lecture	
		constant, Other common		knowledge	Illustration	
		crystal structures		on other		
				crystal		
				structures		
III	Magnetic N	Materials	I	1		
	1	Magnetic and	3	To be able to	Lecture with	
		nonmagnetic materials,		distinguish	PPT	Short test
		Magnetic dipole compared		between	Illustration	
		with electric dipole		magnetic and		Quiz
		1		nonmagnetic		Formative
				materials		assessment
	2	Important terms in	3	To know the	Lecture with	II
		magnetism, Sources of	-	important	PPT	
		permanent magnetic		terms in	Illustration	
		moment		magnetism		
	3	Classification of magnetic	5	To know the	Lecture with	
	-	materials, Theory of	-	classical	PPT	
		diamagnetism, Classical		theory	Illustration	
		theory of para magnetism,		involved in	mastration	
		Theories of		Dia and Para		
		ferromagnetism, The		magnetism		
		Weiss exchange		magnetism		
		(molecular) field				
	4		4	To acquire	Question-	
	4	Domain theory,	4	-	-	
		Hysteresis, Hard and soft		knowledge	answer	

		magnetic material,		on ferro, ferri	session	
		Antiferromagnetism		and antiferro	56551011	
		Ferrimagnetism		magnetism	Lecture	
IV	Dielectric			magnetism	Lecture	
	1	Dielectrics, Polarizability and dielectric constant, Types of polarization	4	To acquire knowledge on Dielectrics, Polarizability and dielectric constant	Lecture Discussion	Formative assessment II
	2	Langevin's theory of polarization in polar dielectrics, Piezoelectric materials, Ferroelectrics, Antiferroelectricity	3	To acquire knowledge on piezoelectric and ferroelectric materials	Lecture Discussion	
	3	Internal or local field, Clausius Mossotti equation, Lorentz- formula, Frequency and temperature effects on polarization	4	To be able to understand the effects of Frequency and temperature on polarization	Lecture Discussion	
	4	Dielectric breakdown, Dielectric loss, Classification of insulating materials, Important insulating materials	4	To be able to classify the insulating materials	Brain storming session. Lecture Discussion	
V	Semicondu	ictors and Superconductors				
	1	Bands in solids , Elemental and compound semiconductors, Conduction in semiconductors, Band structure of semiconductors	4	To acquire knowledge on elemental and compound semiconductors	Lecture with PPT	Short test Formative assessment III
	2	Concentration of charge carriers, Mobility and conductivity in semiconductors	3	To understand the concept of mobility and conductivity	Lecture Illustratio n	
	3	Discovery of superconductivity, Superconductivity and	4	To understand the properties of superconductors		

	magnetism, Critical magnetic field, Meissner		Illustratio n	
	effect, Magnetic induction in superconductors			
4	Type I and Type II Superconductors, Isotope effect, Applications of superconductors	To understand the significance and applications of superconductors	Lecture with PPT	

Course Instructor:Dr. C. Nirmala LouisHead of the Department:Dr. S. Mary Delphine

Name of the Course	: Programming with C++
Subject code	: PC1754

Number of hours
per weekNo of creditsTotal number of
hoursMarks5475100

Objectives:

- 1. To apply C++ language to write simple programs for solving general Physics problems
- 2. To enable the students developing their own Applications using C++ and evolve as efficient software programmers

СО	Upon completion of this course, students will be able to:	PSO	CL
CO - 1	describe the principles of object oriented program. (abstraction, encapsulation, inheritance and polymorphism)	PSO - 4	С
CO - 2	apply object oriented programming techniques to solve computing problems.	PSO - 4	Ар
CO - 3	develop programs using functions and classes.(objects, array of objects, friend functions, passing and returning objects)	PSO - 4	С
CO - 4 develop programs using constructor, destructor, operator overloading and inheritance.		PSO - 4	С
CO - 5	formulate the applications of pointers and virtual functions.	PSO - 4	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Principles	of object oriented Prog	ramming			
	1	Object-orientedprogramming,paradigm,Basicconceptsofobjectorientedprogramming	3	To understand the basic concepts of object oriented pro gramming	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice
	2	Benefits of OOP, Object-oriented languages, Applications of OOP	3	To know the benefits and applications of OOP	Lecture discussion with PPT illustration	questions Formative assessment I
	3	Introduction to C++ and its applications, A simple C++ program – An example with class	3	To be able to write a simple program in C++	Lecture discussion	
	4	Structure of C++ program, Creating the source file, Compiling and Linking	3	To be able to understand the structure of C++ program	Lecture discussion	
II	Tokens, Ex	xpressions and Control	Structures			
	1	Introduction, Tokens, Keywords, Identifiers and constants	3	To understand the concept of Tokens, Keywords, Identifiers and constants	Lecture Illustration	Short test Quiz Assignment
	2	Basic data types, User defined data types, Storage classes, Derived data types, Symbolic constants	3	To acquire knowledge on basic and user defined data types	Lecture discussion	Formative assessment I
	3	Declaration of Variables, Dynamic initialization of variables, Reference variables	3	To understand the concept dynamic initialization of variables	Lecture discussion	
	4	Operators in C++, Scope resolution	3	To acquire knowledge on	Lecture	

					T11 / /	
		operator, Memory		operators	Illustration	
		management				
		operator				
III		Classes and Objects			1	
	1	The main function,	3	To acquire	Lecture	
		Function		knowledge on	with PPT	Short test
		prototyping, Call by		main function	Illustration	
		reference, Return by		and function		Quiz
		reference		prototyping		Formative
	2	Inline functions,	3	To be able to	Lecture	assessment II
		Default arguments,		understand the	with PPT	
		Constant arguments,		concept	Illustration	
		Function		functions		
		overloading, Friend				
		and virtual functions				
	3	Specifying a class,	3	To be able to	Lecture	-
	5	Defining member	5	specify a class	with PPT	
		function, A C++		specify a class	Illustration	
		program with class,			mustration	
		Making an outside				
		-				
		function inline,				
		Nesting of member				
		functions	-			
	4	Private member	3	To acquire	Question-	
		functions, Arrays		knowledge on	answer	
		within a class,		arrays within a	session	
		Memory allocation		class and		
		for objects, Static		arrays of	Lecture	
		data members, Static		objects		
		member functions,				
		Arrays of objects,				
		Friendly functions				
IV	Constructo	rs, Destructors and Op	perator over	rloading		
	1	Constructors,	3	To understand	Lecture	
		Parameterized		the concept		
		constructors,		constructors	Discussion	Formative
		Multiple			/ / /////	assessment II
		constructors in a				
		class, Constructors				
		with default				
		arguments,				
		Dynamic				
		initialization of				
1		objects			1	

	2	Cause to t	2	T		
	2	Copy constructor,	3	To acquire	T (
		Dynamic		knowledge on	Lecture	
		constructors,		copy	D' '	
		Constructing two		constructor	Discussion	
		dimensional arrays,		and dynamic		
	-	Destructors		constructors		
	3	Defining Operator	3	To be able to	_	
		overloading,		understand	Lecture	
		Overloading Unary		overloading		
		operators,		operators	Discussion	
		overloading, Binary				
		operators,				
		Overloading Binary				
		operators using				
		friends				
	4	Manipulation of	3	To understand	Brain	
		strings using		the rules for	storming	
		operators, Rules for		Overloading	session.	
		overloading		operators	Lecture	
		operators			Discussion	
V	Inheritance	, Pointers and Virtual	functions			
	1	Defining derived	3	To acquire	Lecture	Short test
		classes, Single		knowledge on	with PPT	
		inheritance, Making a		inheritance		Formative
		private member				assessment III
		inheritable				
	2	Multilevel	3	To be able to	Lecture	
		inheritance, Multiple		distinguish		
		inheritance,		between	Illustration	
		Hierarchical		multilevel		
		inheritance, Hybrid		inheritance		
		inheritance.		and multiple		
				inheritance		
	3	Pointers, Pointers to	3	To acquire	Lecture	
		objects, Pointers to		knowledge on	with PPT	
		derived classes		pointers	Illustration	
	4	Virtual functions,	3	To understand	Lecture	
		Virtual constructors		the	with PPT	
		and destructors.		significance of		
				virtual		
				functions		
			I	hini and Dr. A. Loc	1	

Course Instructor

: Dr. M. Priyadharshini and Dr. A. Lesly Fathima

Head of the Department :

Dr. S. Mary Delphine

Semester : V

Name of the Course : Elements of Modern

Physics Subject cod No of hours per week	e : PC1751 No. of credits	Total No. of hours	Marks
6	5	90	100

Objectives: 1.To provide insight into wave- particle duality and its consequence. **2.**To apply skill related to principle and concepts of modern physics.

СО	Upon completion of this course the students will be able to :	PSO addressed	CL
CO-1	Explain the theories and experiment related to particle and wave nature of light.	PSO-1	U
CO- 2	Identify particle nature experiments (photoelectric effect, planks law, Compton effect, photoelectric effect) and wave nature experiments(Thomson experiment, Davision Germer experiment).	PSO-2	Ар
CO- 3	Define uncertainty principle.	PSO-2	R
CO -4	Analyse various models of atomic spectra.	PSO-5	An
CO- 5	Solve Schrodinger equation in different dimensional stages.	PSO-4	С
CO- 6	Estimate Lorentz transformation for length contraction ,time dilation.	PSO-5	Е

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment /Evaluation
Ι	Particle N	Nature of Radiation				

1	Introduction , Spectral distribution of	2	То	PPT,	Quiz test,
	blackbody radiation, Quantum hypothesis of		summaris	Lecture	Formative
	Planck		e the	method	assessment
			quantum		(I)
			theories		
2.	Planck's law of radiation, Photoelectric	5	То	PPT,	
	Effect,		explain		
	Photoemission characteristics Failure of		particle		
	electromagnetic wave theory, Einstein's		nature		

		Photoelectric equation		theories		
	3.	Millikan's verification of Einstein's equation, Continuous X-ray Spectrum, Compton effect	4	To explain particle nature experime nts	Lecture	
	4.	Energy of scattered radiation and recoil electron, Compton scattering vs Photoelectric effect,Pair Production, Particle or Waves.	4	To compare Compton and Photoelec tric effect	PPT, Lecture, Group discussio n	
Π	Wave Na	ture of Particles				
	1	Introduction , De Broglie waves and wavelength, Wavelength vs Voltage	3	To explain wave nature theories	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Davisson –Germer experiment, Experiments of G.P Thomson, Frisch and stern's method	4	To explain wave nature experime nts	Lecture method	
	3.	Standing electron waves in a circular orbit, Heisenberg's uncertainty principle	4	To Define uncertain ty principle	PPT, Lecture, Group discussio n	
	4.	Uncertainty relation, Uncertainty principle and concept of Bohr orbits, Derivation of the uncertainty principle, Phase velocity and group velocity, Phase and group velocities of matter waves.	4	To Derive uncertain ty relation	PPT, Lecture, Group discussio n	
III	Atomic s					
		Introduction ,Spectra of H atom,Orbital magnetic moment of H atom, Larmor precession	3	To analyse various models of atomic spectra	Lecture, Group discussio n	Quiz test, Formative assessment (II),

	2	SternGerlachexperiment,ElectronSpin,Vector atom model,Spin-orbit interactionPauli'sexclusion principle,Total angularmomentum in multi-electron atoms,Energylevels and transitions of helium,Alkali spectra	4	To analyse various interaction To analyse various models of spectra	PPT, Lecture, PPT, Lecture, Group discussion	
	4.	Normal Zeeman effect, Anomalous Zeeman effect, Stark effect	3	To differenti ate differet effects	PPT, Lecture,	
IV	Atomic n	nodels and Quantum Mechanics				
	1	Introduction ,Atomic spectra,Thomson's model Rutherford's nuclear atom model	2	To analyse various models of atomic spectra	PPT, Lecture,	Quiz test, Formative assessment (II & III),
	2	Bohr's model of hydrogen atom Hydrogen spectrum Ritz combination principle Correction for finite nuclear mass	4	To explain hydrogen atom model	PPT, Lecture,	
	3	Discovery of heavy hydrogen , Hydrogenic atoms Sommerfeld's model , Bohr's correspondence principle,Resonance, excitation and ionization potentials,– Measurements of critical potentials Merits and Limitations of Bohr's theory	4	To explaint the Merits and Limitatio ns of Bohr's theory	PPT, Lecture,	
	4	Schrodinger wave equation, Schrodinger time dependent wave equation Schrodinger time independent wave equation, Physical significance of the wave function	3	To Solve Schrodin ger equation	PPT, Lecture,	

V	5 Special Th	Applications of Schrodinger wave equation , Particle in a one dimensional potential well Particle in three dimensional box, Degeneracy Electrons in a metal.	2	To Solve Schrodin ger equation in different dimensio nal stages.	PPT, Lecture,	
	1	Introduction ,Frame of reference, Galilean transformations,Michelson-Morley experiment	2	To explain differed reference	Lecture, PPT	Formative assessment (II & III),
	2	Einstein's postulates,Lorentz transformations Length contraction,Time dilation	3	Estimate Lorentz transform ation for length contracti on, time dilation.	Lecture.	
	3	Relativity of simultaneity,Addition of relativistic velocities, Relativistic mass,Mass- energy relation	4	Estimate Lorentz transform ation for	Lecture, PPT	
	4	Minkowski's four dimensional space,Time continuum,General theory of relativity,Massless particle.	6	Derive four dimensio nal space,Ti me continuu m	Lecture	

Course Instructor : Dr. V. Shally and Dr. R. Krishna Priya

Head of the Department : Dr. S. Mary Delphine

Name of the Course	: Waves and Optics		
Subject code	: PC1752		
No of hours per week	No. of credits	Total No. of hours	Marks
6	5	90	100
Ŭ		20	100

Objectives 1. To study the electromagnetic nature of light.

2.To enable the students to link the theory with day to day life.

СО	Upon completion of this course, students will be	PSO	CL
CO	able to:	addressed	CL
CO - 1	explain the fundamental principle of optics.	PSO - 1	U
CO - 2	determine the behavior of a ray at any optical	PSO - 6	Е
	surface .(lenses, Prisms).	150 0	Ľ
CO - 3	explain the types of waves and its characteristics.	PSO - 2	U
CO - 4	analyze the intensity variation of light due to	PSO - 3	An
	polarization, interference and diffraction.	150 5	7 111
CO - 5	distinguish Interference, diffraction and	PSO - 2	An
	polarization.	150 2	7 111
CO - 6	test the optical planeness of any optical surface.	PSO - 6	С
	measure the various optical parameters. (focal		
CO - 7	length, power, refractive index, radius of curvature,	PSO - 4	Е
	dispersive power etc) using optical components	120	-
	(prism, lenses, glass plate, grating).		
	understand the interference and diffraction from		
CO - 8	wave optics concepts and know its applications.	PSO - 1	U
	Understand polarization of light and its		÷
	applications.		

Unit	Module	Description	Lecture hours	Learning outcome	Pagagogy	Assessment/ Evaluation
Ι	Geometri	cal Optics				
	1	Introduction – Refractive index and optical path- Sign convention – Refraction through lenses – Principal foci	2	To summaris e the basic concepts of optics	PPT, Lecture method	Quiz test, Formative assessment (I)
	2.	Deviation produced by a thin lens – Power	5	То	Lecture,	

	3.	of a lens - Aberrations – Spherical aberration in a lens –Methods of reducing spherical aberration (brief) – Chromatic aberration Dispersion by a prism - Refraction through a prism – Angular and chromatic dispersion – Dispersive power	4	explain the various aberratio ns in lens systems To discuss the dispersio n and refraction in a prism	PPT	
	4.	Achromatism in prism – Dispersion without deviation – Condition for achromatism of two lenses placed in contact and separated by a finite distance.	4	To explain achromat ic principles of prism	PPT, Lecture, Group discussio n	
II	Wave Op	otics			I	I
	1	Oscillations – Waves – Travelling waves – Wave front and ray – Examples of waves – Characteristics	3	To explain the different types of waves and characteri stics	PPT,	Quiz test, Formative assessment (I), Assignment
	2.	Mathematical representation – Phase velocity – Complex representation – Wave packet and band width – Group velocity	4		Lecture method	
	3.	Propagation of light waves: Introduction – Maxwell's equations – Physical significance	4	To discuss the light propagati	PPT, Lecture, Group discussio	
				on in a medium	n	

III	Interfere 1	relations – Wave equation for free space – Velocity of Electromagnetic waves – Relation between refractive index and relative permittivity.	3	explain the various paramete rs of waves To analyse	Lecture, Group discussio n Lecture, Group	Quiz test, Formative
				the principle in interferen ce	discussio n	assessment (II),
	2	Analytical treatment – Theory of interference – Fresnel's biprism – Fringes with white light	4	To explain the differed theories of interferen ce	PPT, Lecture,	
	3.	Lioyd's mirror – Interference in thin films – Interference due to reflected and transmitted light	5	To explain the interferen ce in thinfilms	PPT, Lecture, Group discussio n	
	4.	Wedge shaped thin film – Testing the planeness – Newton's rings – Determination of λ	3	To determin e the waveleng th of the light source	PPT, Lecture,	
IV	Diffractio	D n				
	1	Fraunhofer diffraction : Introduction – Single slit – Intensity distribution	2	To analyse the principle in	PPT, Lecture,	Quiz test, Formative assessment (II & III),

r	1					
				diffractio		
				n		
	2	Double slit – Comparison between interference and diffraction – Fraunhofer diffraction at N slits	4	To compare the interferen ce and diffractio	PPT, Lecture,	
	3	Plane diffraction grating – Theory – Principal maxima – Oblique incidence	4	n To explain the theoritica l principles in diffractio n grating	PPT, Lecture,	
	4	Determination of λ using grating – Dispersive power – Fresnel's diffraction	3	To determin e the dispersiv e power	PPT, Lecture,	
	5	Introduction – Huygen's Fresnel theory – Fresnel's assumptions – Rectilinear propagation of light	2	To explain the theoritica l principles of diffractio n	PPT, Lecture,	
V	Polarizat	ion		1	1	1
	1	Introduction – Polarization – Unpolarized and polarized light – Types of polarization	2	To explain the polarizati on of light	Lecture, PPT	Formative assessment (II & III),

2	Production of plane polarized light -	3	То	Lecture.	
	Polarizer and analyser – Anisotropic crystals		explain		
	– Double refraction		the		
			polarizati		
			on and		
			double		
			refraction		
			in		
			crystals		
3	Ordinary and extra ordinary ray – Positive	4	То	Lecture,	
	and negative crystals – Nicol prism – Quarter		discuss	PPT	
	and half wave plates		the half		
			and		
			quarter		
			wave		
			plates	_	
4	Production and analysis of elliptically and	6	То	Lecture	
	circularly polarized light - Analysis of		analyze		
	polarized light		the		
			different		
			polarized		
	structor · Dr S Mary Delphine and Dr A		lights		

Course Instructor

: Dr. S. Mary Delphine and Dr. Abila Jeba Queen

Head of the Department : Dr. S. Mary Delphine

Name of the Course : Solid State Physics

Subject code : PC1753

No of hours per week	No of credits	Total no of hours	Marks
6	5	90	100

Objectives

- 1. To impart knowledge on the structure of crystals and the different types of materials.
- 2. To develop a scientific attitude at micro and nano scales of materials

СО	Upon completion of this course, students will be able to:	PSO addressed	CL
CO - 1	illustrate various types of bonding present in solids with example.	PSO - 1	U
CO - 2	explain the various crystal parameters and structures.	PSO - 3	Е
CO - 3	discuss the various theories involved in magnetic materials. (dia, para, ferro, ferri and antiferro magnetism)	PSO - 3	С
CO - 4	describe polarization processes and analyze the information contained in the temperature and frequency dependence of dielectric materials.	PSO - 1	С
CO - 5	analyze the structure and physical properties of semiconductors.	PSO - 5	An
CO - 6	describe and discuss the theory of superconductivity and superconducting materials.	PSO - 2	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment /Evaluation
Ι	Bonding i	n Solids		I		
	1	Bonding in solids, An over view of an atom, Condition for bonding, Octet rule and stability	4	To acquire knowledge on bonding in solids	Lecture Discussion with PPT illustration	Evaluation through short test Multiple
	2	Van der Waal's bonding, Ionic bonding, Covalent bonding	3	To understand the different kinds of bonding	Lecture discussion with PPT illustration	choice questions Formative assessment I
	3	Dipole-dipole interactions, Hydrogen bonding, Metallic bonding, Mixed bonding	4	To acquire knowledge on hydrogen, metallic and mixed bonding	Lecture discussion	

	4	Calculation of ionization	4	To be able to	Lecture	
	4		4	determine the	discussion	
		energies for compounds,		ionization	discussion	
		Comparison of physical				
II	Curvete	properties line Materials		energies		
11			4	-	T	G1
	1	Classification of solids,	4	То	Lecture	Short test
		Periodicity in crystalline		understand	T 11	• •
		solids, Lattice translation		the concept	Illustration	Quiz
		vectors		of crystal		
				structure.		
	2	Unit and primitive cells,	4	To acquire	Lecture	Assignment
		Bravais lattices,		knowledge	discussion	
		Symmetry operations		on unit cells		Formative
				and bravais		assessment I
				lattices		
	3	Crystal indexing, Miller	4	To be able to	Lecture	
		indices of lattice planes,		determine the	discussion	
		Directions in crystals,		miller indices		
		Atomic packing factor		of lattice		
		(APF)		planes		
	4	Density and lattice	3	To acquire	Lecture	
		constant, Other common		knowledge	Illustration	
		crystal structures		on other		
		5		crystal		
				structures		
III	Magnetic N	Materials		1		
	1	Magnetic and	3	To be able to	Lecture with	
		nonmagnetic materials,		distinguish	PPT	Short test
		Magnetic dipole compared		between	Illustration	
		with electric dipole		magnetic and		Quiz
		1		nonmagnetic		Formative
				materials		assessment
	2	Important terms in	3	To know the	Lecture with	II
		magnetism, Sources of	-	important	PPT	
		permanent magnetic		terms in	Illustration	
		moment		magnetism		
	3	Classification of magnetic	5	To know the	Lecture with	
	C	materials, Theory of	0	classical	PPT	
		diamagnetism, Classical		theory	Illustration	
		theory of para magnetism,		involved in	mustration	
		Theories of		Dia and Para		
		ferromagnetism, The		magnetism		
		Weiss exchange		magneusin		
		0				
	4	(molecular) field	4	To acquire	Quastian	
	4	Domain theory,	4	To acquire	Question-	
		Hysteresis, Hard and soft		knowledge	answer	

		magnetic material,		on ferro, ferri	session	
		Antiferromagnetism		and antiferro	50551011	
		Ferrimagnetism		magnetism	Lecture	
IV	Dielectric			magnetism	Lecture	
	1	Dielectrics, Polarizability and dielectric constant, Types of polarization	4	To acquire knowledge on Dielectrics, Polarizability and dielectric constant	Lecture Discussion	Formative assessment II
	2	Langevin's theory of polarization in polar dielectrics, Piezoelectric materials, Ferroelectrics, Antiferroelectricity	3	To acquire knowledge on piezoelectric and ferroelectric materials	Lecture Discussion	
	3	Internal or local field, Clausius Mossotti equation, Lorentz- formula, Frequency and temperature effects on polarization	4	To be able to understand the effects of Frequency and temperature on polarization	Lecture Discussion	
	4	Dielectric breakdown, Dielectric loss, Classification of insulating materials, Important insulating materials	4	To be able to classify the insulating materials	Brain storming session. Lecture Discussion	
V	Semicondu	ictors and Superconductors				
	1	Bands in solids , Elemental and compound semiconductors, Conduction in semiconductors, Band structure of semiconductors	4	To acquire knowledge on elemental and compound semiconductors	Lecture with PPT	Short test Formative assessment III
	2	Concentration of charge carriers, Mobility and conductivity in semiconductors	3	To understand the concept of mobility and conductivity	Lecture Illustratio n	
	3	Discovery of superconductivity, Superconductivity and	4	To understand the properties of superconductors		

	magnetism, Critical magnetic field, Meissner		Illustratio n	
	effect, Magnetic induction in superconductors			
4	Type I and Type II Superconductors, Isotope effect, Applications of superconductors	To understand the significance and applications of superconductors	Lecture with PPT	

Course Instructor:Dr. C. Nirmala LouisHead of the Department:Dr. S. Mary Delphine

Name of the Course	: Programming with C++
Subject code	: PC1754

Number of hours
per weekNo of creditsTotal number of
hoursMarks5475100

Objectives:

- 1. To apply C++ language to write simple programs for solving general Physics problems
- 2. To enable the students developing their own Applications using C++ and evolve as efficient software programmers

СО	Upon completion of this course, students will be able to:	PSO	CL
CO - 1	describe the principles of object oriented program. (abstraction, encapsulation, inheritance and polymorphism)	PSO - 4	С
CO - 2	apply object oriented programming techniques to solve computing problems.	PSO - 4	Ар
CO - 3	develop programs using functions and classes.(objects, array of objects, friend functions, passing and returning objects)	PSO - 4	С
CO - 4	develop programs using constructor, destructor, operator overloading and inheritance.	PSO - 4	С
CO - 5	formulate the applications of pointers and virtual functions.	PSO - 4	С

Unit	Module	Topics	Lecture hours	Learning outcome	Pedagogy	Assessment/ Evaluation
Ι	Principles	of object oriented Prog	ramming			
	1	Object-orientedprogramming,paradigm,Basicconceptsofobjectorientedprogramming	3	To understand the basic concepts of object oriented pro gramming	Lecture Discussion with PPT illustration	Evaluation through short test Multiple choice
	2	Benefits of OOP, Object-oriented languages, Applications of OOP	3	To know the benefits and applications of OOP	Lecture discussion with PPT illustration	questions Formative assessment I
	3	Introduction to C++ and its applications, A simple C++ program – An example with class	3	To be able to write a simple program in C++	Lecture discussion	
	4	Structure of C++ program, Creating the source file, Compiling and Linking	3	To be able to understand the structure of C++ program	Lecture discussion	
II	Tokens, Ex	xpressions and Control	Structures			
	1	Introduction, Tokens, Keywords, Identifiers and constants	3	To understand the concept of Tokens, Keywords, Identifiers and constants	Lecture Illustration	Short test Quiz Assignment
	2	Basic data types, User defined data types, Storage classes, Derived data types, Symbolic constants	3	To acquire knowledge on basic and user defined data types	Lecture discussion	Formative assessment I
	3	Declaration of Variables, Dynamic initialization of variables, Reference variables	3	To understand the concept dynamic initialization of variables	Lecture discussion	
	4	Operators in C++, Scope resolution	3	To acquire knowledge on	Lecture	

					T11 / /	
		operator, Memory		operators	Illustration	
		management				
		operator				
III		Classes and Objects			1	
	1	The main function,	3	To acquire	Lecture	
		Function		knowledge on	with PPT	Short test
		prototyping, Call by		main function	Illustration	
		reference, Return by		and function		Quiz
		reference		prototyping		Formative
	2	Inline functions,	3	To be able to	Lecture	assessment II
		Default arguments,		understand the	with PPT	
		Constant arguments,		concept	Illustration	
		Function		functions		
		overloading, Friend				
		and virtual functions				
	3	Specifying a class,	3	To be able to	Lecture	-
	5	Defining member	5	specify a class	with PPT	
		function, A C++		specify a class	Illustration	
		program with class,			mustration	
		Making an outside				
		-				
		function inline,				
		Nesting of member				
		functions	-			
	4	Private member	3	To acquire	Question-	
		functions, Arrays		knowledge on	answer	
		within a class,		arrays within a	session	
		Memory allocation		class and		
		for objects, Static		arrays of	Lecture	
		data members, Static		objects		
		member functions,				
		Arrays of objects,				
		Friendly functions				
IV	Constructo	rs, Destructors and Op	perator over	rloading		
	1	Constructors,	3	To understand	Lecture	
		Parameterized		the concept		
		constructors,		constructors	Discussion	Formative
		Multiple				assessment II
		constructors in a				
		class, Constructors				
		with default				
		arguments,				
		Dynamic				
		initialization of				
1		objects			1	

	2	Course i i	2	T		
	2	Copy constructor,	3	To acquire	T (
		Dynamic		knowledge on	Lecture	
		constructors,		copy	D' '	
		Constructing two		constructor	Discussion	
		dimensional arrays,		and dynamic		
	-	Destructors		constructors		
	3	Defining Operator	3	To be able to	_	
		overloading,		understand	Lecture	
		Overloading Unary		overloading		
		operators,		operators	Discussion	
		overloading, Binary				
		operators,				
		Overloading Binary				
		operators using				
		friends				
	4	Manipulation of	3	To understand	Brain	
		strings using		the rules for	storming	
		operators, Rules for		Overloading	session.	
		overloading		operators	Lecture	
		operators			Discussion	
V	Inheritance	, Pointers and Virtual	functions			
	1	Defining derived	3	To acquire	Lecture	Short test
		classes, Single		knowledge on	with PPT	
		inheritance, Making a		inheritance		Formative
		private member				assessment III
		inheritable				
	2	Multilevel	3	To be able to	Lecture	
		inheritance, Multiple		distinguish		
		inheritance,		between	Illustration	
		Hierarchical		multilevel		
		inheritance, Hybrid		inheritance		
		inheritance.		and multiple		
				inheritance		
	3	Pointers, Pointers to	3	To acquire	Lecture	
		objects, Pointers to		knowledge on	with PPT	
		derived classes		pointers	Illustration	
	4	Virtual functions,	3	To understand	Lecture	
		Virtual constructors		the	with PPT	
		and destructors.		significance of		
				virtual		
				functions		
			I	hini and Dr. A. Loc	1	

Course Instructor

: Dr. M. Priyadharshini and Dr. A. Lesly Fathima

Head of the Department :

Dr. S. Mary Delphine